Gut microbiota related response of Oryzias melastigma to combined exposure of polystyrene microplastics and tetracycline.

The Science of the total environment(2023)

引用 0|浏览6
暂无评分
摘要
The co-existence of microplastics (MPs) and antibiotics in the coastal environment poses a combined ecological risk. Single toxic effects of MPs or antibiotics on aquatic organisms have been verified, however, the exploration of their combined toxic effects remains limited. Here, foodborne polystyrene microplastics (PS-MPs, 10 μm, 0.1 % w/w in food) and waterborne tetracyclines (TC, 50 μg/L) were used to expose an estuarine fish Oryzias melastigma for four weeks. We found that the aqueous availability of TC was not significantly altered coexisting with MPs. The fish body weight gain was significantly slower in TC alone or combined groups than the control group, consistent with the lower lipid content in livers. The body length gain was significantly inhibited by the combined presence compared to the single exposure. Both exposures led to a shift of gut microbiota composition and diversity. TC and the combined group possessed similar gut microbiota which is distinct from PS-MPs and the control group. The Firmicutes/Bacteroidetes (F/B) ratio in the TC and combined groups were significantly lower compared to the control, while the PS-MPs group showed no significant impact. Metabolomic analysis of the fish liver confirmed the shift of metabolites in specific pathways after different exposures. More, a number of gut microbiota-related metabolites on lipid metabolism was perturbed, which were annotated in arachidonic acid metabolism and linoleic acid metabolism. In all, TC modulates bacterial composition in the fish gut and disturbs their liver metabolites via the gut-liver axis, which led to the slower growth of O. melastigma. More, the adverse impact was aggravated by the co-exposure to foodborne PS-MPs.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要