Spin device-based image edge detection architecture for neuromorphic computing

NANOTECHNOLOGY(2024)

引用 0|浏览0
暂无评分
摘要
Artificial intelligence and deep learning today are utilized for several applications namely image processing, smart surveillance, edge computing, and so on. The hardware implementation of such applications has been a matter of concern due to huge area and energy requirements. The concept of computing in-memory and the use of non-volatile memory (NVM) devices have paved a path for resource-efficient hardware implementation. We propose a dual-level spin-orbit torque magnetic random-access memory (SOT-DLC MRAM) based crossbar array design for image edge detection. The presented in-memory edge detection algorithm framework provides spin-based crossbar designs that can intrinsically perform image edge detection in an energy-efficient manner. The simulation results are scaled down in energy consumption for data transfer by a factor of 8x for grayscale images with a comparatively smaller crossbar than an equivalent CMOS design. DLC SOT-MRAM outperforms CMOS-based hardware implementation in several key aspects, offering 1.53x greater area efficiency, 14.24x lower leakage power dissipation, and 3.63x improved energy efficiency. Additionally, when compared to conventional spin transfer torque (STT-MRAM and SOT-MRAM, SOT-DLC MRAM achieves higher energy efficiency with a 1.07x and 1.03x advantage, respectively. Further, we extended the image edge extraction framework to spiking domain where ant colony optimization (ACO) algorithm is implemented. The mathematical analysis is presented for mapping of conductance matrix of the crossbar during edge detection with an improved area and energy efficiency at hardware implementation. The pixel accuracy of edge-detected image from ACO is 4.9% and 3.72% higher than conventional Sobel and Canny based edge-detection.
更多
查看译文
关键词
computing-in-memory,spintronics,image edge detection
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要