Fiber-reinforced gelatin/β-cyclodextrin hydrogels loaded with platelet-rich plasma-derived exosomes for diabetic wound healing.

Biomaterials advances(2023)

引用 0|浏览4
暂无评分
摘要
Diabetic complications with high-glucose status (HGS) cause the dysregulated autophagy and excessive apoptosis of multiple-type cells, leading to the difficulty in wound self-healing. Herein, we firstly developed fiber-reinforced gelatin (GEL)/β-cyclodextrin (β-CD) therapeutic hydrogels by the modification of platelet-rich plasma exosomes (PRP-EXOs). The GEL fibers that were uniformly dispersed within the GEL/β-CD hydrogels remarkably enhanced the compression strengths and viscoelasticity. The PRP-EXOs were encapsulated in the hydrogels via the covalent crosslinking between the PRP-EXOs and genipin. The diabetic rat models demonstrated that the GEL/β-CD hydrogels and PRP-EXOs cooperatively promoted diabetic wound healing. On the one hand, the GEL/β-CD hydrogels provided the biocompatible microenvironments and active components for cell adhesion, proliferation and skin tissue regeneration. On the other hand, the PRP-EXOs in the therapeutic hydrogels significantly activated the autophagy and inhibited the apoptosis of human umbilical vein endothelial cells (HUVECs) and human skin fibroblasts (HSFs). The activation of autophagy and inhibition of apoptosis in HUVECs and HSFs induced the blood vessel creation, collagen formation and re-epithelialization. Taken together, this work proved that the incorporation of PRP-EXOs in a wound dressing was an effective strategy to regulate autophagy and apoptosis, and provide a novel therapeutic platform for diabetic wound healing.
更多
查看译文
关键词
Gelatin fiber,Hydrogel,Platelet-rich plasma-derived exosomes,Autophagy,Apoptosis
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要