谷歌浏览器插件
订阅小程序
在清言上使用

Quantitative Prediction of the Solvent Fractionation of Lignin

Green Chemistry(2023)

引用 1|浏览21
暂无评分
摘要
Lignin is the most abundant and sustainable source of aromatics on earth. However, its heterogeneous structure and hard-to-predict physicochemical properties complicate its valorization potential in many applications. We present a combined experimental and theoretical approach to quantify and predict the fractionation of lignin in binary solvent blends. This serves as an important way to reduce feedstock heterogeneity, obtaining lignin fractions with better defined molecular features. Our model predicts how the yield, in terms of amount of dissolved lignin, varies with the solvent composition. To explain the experimental results, it is essential that we invoke the physical and chemical polydispersity of lignin in our model. We obtain quantitative agreement with experimental results on various molecular features of the dissolved lignin fractions, including the yield, molecular mass, and the number of functional hydroxyl groups. This work shows that the amount and nature of dissolved lignin can be tuned predictably using a combination of solvents, which paves the way for a broader applicability of lignin as a bio-based material. A combined experimental and theoretical framework was developed that predicts the solvent fractionation of lignin, taking chemical and physical dispersity into account. This paves the way for a broader applicability of lignin in bio-based materials.
更多
查看译文
关键词
Lignin Valorization
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要