Accelerating redox kinetics by ZIF-67 derived amorphous cobalt phosphide electrocatalyst for high-performance lithium-sulfur batteries

ENERGY MATERIALS(2023)

引用 0|浏览1
暂无评分
摘要
The feasibility of the commercialization of lithium-sulfur (Li-S) batteries is troubled by sluggish redox conversion kinetics and the shuttle effect of polysulfides. Herein, a zeolitic imidazolate framework derived amorphous CoP combined with carbon nanotubes conductive network composites (aCoP@CNTs) has been synthesized as an effective dual-electrocatalyst for accelerating the redox kinetics of polysulfides to prolong the lifespan of Li-S batteries. Compared with crystalline CoP, unsaturated Co atoms of aCoP@CNTs exhibit stronger chemical adsorption capacity for polysulfides and serve as catalytic centers to accelerate the conversion from soluble polysulfides to solid-state lithium sulfide. Meanwhile, the 3D porous conductive network not only facilitates ion/electron transportation but also forms a physical barrier to limit the migration of polysulfides. Benefiting from the above preponderances, the batteries with aCoP@CNTs modified interlayer exhibited excellent cycle stability (initial discharge capacity of 1227.9 mAh g-1 at 0.2 C), rate performance (795.9 mAh g-1 at 2.5 C), long-term cycle reliability (decay rate of 0.049% per cycle at 1 C over 1000 cycles), and superior high-loading performance (high initial discharge capacity of 886 mAh g-1 and 753.6 mAh g-1 at 1 C under high S loading of 3 mg cm-2 and 4 mg cm-2).
更多
查看译文
关键词
amorphous cobalt phosphide electrocatalyst,redox kinetics,high-performance,lithium-sulfur
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要