High temperature thermo-mechanical responses mediated by interfacial microstructure regulation in tungsten heavy alloy/superalloy brazed joints

JOURNAL OF MATERIALS RESEARCH AND TECHNOLOGY-JMR&T(2023)

引用 0|浏览3
暂无评分
摘要
The plasma-facing components of future fusion reactor applications, where tungsten heavy alloy (WHA) and superalloy dual-metallic structures are promising structural and functional materials, will be fabricated by vacuum brazing techniques. Herein, the mechanistic correlation between multi-interfacial structures from meso-scale to atomic-scale and high temperature thermo-mechanical responses was revealed. Fatigue defect propagation mechanisms induced by thermal cycling load were analyzed, and the orientation relationship of beta-Ti/Fe2Ti coherent interface combined with high residual tensile stress in brittle Ni3Ti illustrated the underlying cause of fatigue cracks and intragranular voids. This work provides insight into the critical engineering challenges of WHA dissimilar joining systems and guides future anti-thermal fatigue designs. (c) 2023 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
更多
查看译文
关键词
interfacial microstructure regulation,heavy alloy/superalloy,joints,thermo-mechanical
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要