谷歌浏览器插件
订阅小程序
在清言上使用

Aspartic Acid-Based Nano-Copper Induces Resilience in Zea Mays to Applied Lead Stress Via Conserving Photosynthetic Pigments and Triggering the Antioxidant Biosystem

SUSTAINABILITY(2023)

引用 0|浏览16
暂无评分
摘要
Heavy metal stress, including lead, adversely affects the growth and yield of several economically important crops, leading to food challenges and significant economic losses. Ameliorating plant responses to various environmental stresses is one of the promising areas of research for sustainable agriculture. In this study, we evaluated the effect of aspartic acid-functionalized copper nanoparticles on the photosynthetic efficiency and antioxidation system of maize plants under Pb toxicity. The ion reduction method was employed for the synthesis of CuNPs, using ascorbic acid as the reducing agent and aspartic acid as the surface functionalizing agent. Isolated experiments under laboratory and field conditions were performed using a randomized complete block design (RCBD). Seeds primed in water, 1.0, 5.0, and 10 µg/mL of Asp-CuNPs were sown under 0, 500, and 1000 mg/L Pb stress in laboratory conditions, while primed seeds along with foliar-applied Asp-CuNP plants were grown in a field under applied Pb stress, and the obtained data were statistically analyzed using TWANOVA. The laboratory experiment shows that Asp-CuNPs act both as a plant growth regulator (PGR) and plant growth inhibitor (PGI), depending upon their concentration, whereby Asp-CuNPs act as a PGR at a concentration of 1 µg/mL ≤ X ≤10 µg/mL. The field experiment confirms that seed priming and foliar spraying with Asp-CuNPs activate embryos and enhance plant growth in a dose-dependent manner. In addition, Asp-CuNPs (10 µg/mL) significantly increase chlorophyll content to 0.87 mg/g from 0.53 mg/g (untreated) when plants were exposed to Pb toxicity at 1000 mg/kg of soil. It is noteworthy that Asp-CuNPs induce resilience to Pb toxicity (1000 mg/kg of soil) in plants by reducing its root absorption from 3.68 mg/kg (0 µg/mL Asp-CuNPs) to 1.72 mg/kg with the application of 10 µg/mL Asp-CuNPs. Additionally, histochemical analyses with NBT and hydrogen peroxide revealed that ROS accretion in plants treated with Asp-CuNPs declined because of the augmentation of antioxidant enzyme (POD, SOD, APOX, etc.) activities under Pb toxicity. Our findings suggest that amino acid-functionalized copper nanoparticles regulate plant defensive mechanisms related to lead tolerance, which is a promising approach for the induction of resistivity to heavy metal stress.
更多
查看译文
关键词
aspartic acid,copper nanoparticles,lead toxicity,Zea mays,SEM,PGI,EDX
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要