Atmospheric Response to Antarctic Sea-Ice Reductions Drives Ice Sheet SurfaceMass Balance Increases

JOURNAL OF CLIMATE(2023)

引用 0|浏览0
暂无评分
摘要
The mass balance of the Antarctic ice sheet is intricately linked to the state of the surrounding atmosphere and ocean. As a direct result, improving projections of future sea level change requires understanding change in the Antarctic atmosphere and Southern Ocean, and the processes that couple these systems. Here, we examine the influence of sea ice cover on the overlying atmosphere and subsequently the surface mass balance (SMB) of the adjacent Antarctic ice sheet. We investigate these processes both over the observational era using the ERA5 atmospheric reanalysis and in ensemble simulations of the Community Earth System Model 2.1 (CESM2) where only sea ice coverage is altered. Comparing extreme high and low sea ice over the satellite era in ERA5 reveals atmospheric and ice sheet SMB anomalies that largely mirror anomalies simulated by CESM2 in response to sea ice loss. Results highlight significant near-surface atmospheric warming in response to sea ice reductions that are particularly pronounced in nonsummer seasons and driven by significant ocean-to-atmosphere turbulent heat fluxes. In areas of sea ice loss, significant ocean surface evaporation increases occur. On the eastern flank of climatological low pressure systems, moisture is readily advected toward the ice sheet, driving positive anomalies in the ice sheet SMB. These results indicate that underestimation of Antarctic sea ice, which is common in many current-generation coupled climate models, may lead to overestimation of the ice sheet SMB and therefore underestimation of Antarctica's contributions to global sea level.
更多
查看译文
关键词
Antarctica, Ice sheets, Sea ice, Ice loss/growth, Atmosphere-ocean interaction
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要