Interplay between Kondo and magnetic interactions in Pr0.75Gd0.25ScGeH

JOURNAL OF ALLOYS AND COMPOUNDS(2023)

引用 0|浏览9
暂无评分
摘要
Combined experimental and density functional theory (DFT) study of Pr0.75Gd0.25ScGe and its hydride (Pr0.75Gd0.25ScGeH) reveals intricacies of composition-structure-property relationships in those distinctly layered compounds. Hydrogenation of the intermetallic parent, crystalizing in a tetragonal CeScSi-type structure, leads to an anisotropic volume expansion, that is, a(=b) lattice parameter decreases while the lattice expands along the c direction, yielding a net increase of cell volume. DFT calculations predict an antiparallel coupling of localized Gd and Pr magnetic moments in both materials at the ground state. While experiments corroborate this for the parent compound, there is no conclusive experimental proof for the hydride, where Pr moments do not order down to 3 K. DFT results also reveal that rare-earth - hydrogen interactions reduce spin-polarization of the Pr and Gd 5d and Sc 3d states at the Fermi energy, disrupt indirect exchange interactions mediated by conduction electrons, dramatically reduce the magnetic ordering temperature, and open a pseudo-gap in the majority-spin channel. Both experiments and theory show evidence of Kondo-like behavior in the hydride in the absence of an applied magnetic field, whereas increasing the field promotes magnetic ordering and suppresses Kondo-like behavior.
更多
查看译文
关键词
Rare earth,Intermetallic,Kondo,XMCD
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要