谷歌浏览器插件
订阅小程序
在清言上使用

Zanthoxylum armatum DC fruit ethyl acetate extract site induced hepatotoxicity by activating endoplasmic reticulum stress and inhibiting autophagy in BRL-3A models

JOURNAL OF ETHNOPHARMACOLOGY(2024)

引用 0|浏览35
暂无评分
摘要
Ethnopharmacological relevance: Zanthoxylum armatum DC (Z. armatum) is renowned not only as a culinary spice but also as a staple in traditional ethnic medicine, predominantly in Southeast Asia and various other regions. Recent research has unveiled its multifaceted pharmacological properties, including anti-inflammatory, antibacterial, and toothache relief effects. Nonetheless, some studies have reported the potential toxicity of Z. armatum , emphasizing the need to further explore its toxicity mechanisms for safer application.Aim of the study: This study investigated the effect and mechanism of hepatotoxicity in BRL-3A cells induced by Z. armatum.Materials and methods: The compounds of the ethyl acetate extract of Z. armatum (ZADC-EA) were identified by ultrahigh performance liquid chromatography coupled with quadrupole-orbitrap high resolution mass spectrometry (UPLC-Q-Orbitrap HRMS). The hepatotoxicity of the extract was evaluated by detecting cell viability, aspartate aminotransferase (AST), alanine aminotransferase (ALT), and lactate dehydrogenase (LDH) activity, and apoptosis. Endoplasmic reticulum stress, autophagy, and apoptosis were detected by Ad-mCherry-GFP-LC3B, flow cytometry, and Western blot to explore the mechanism of hepatotoxicity induced by ZADC-EA.Results: UPLC-Q-Orbitrap HRMS analysis revealed the presence of compounds belonging to flavonoids, terpenoids, and alkaloids. The IC50 value of ZADC-EA was 62.43 mu g/mL, the cell viability of BRL-3A decreased in a time-dose dependent manner, and the levels of AST, ALT, and LDH were upregulated. In addition, ZADC-EAinduced increased expression of eIF2 alpha-ATF4-CHOP pathway proteins, inhibited autophagy, and promoted apoptosis.Conclusions: This study provides insights into the hepatotoxicity mechanisms of ZADC-EA on BRL-3A cells. It was found that ZADC-EA could induce endoplasmic reticulum stress and inhibit autophagy, then intensify apoptosis, and endoplasmic reticulum stress could exacerbate autophagy inhibition.
更多
查看译文
关键词
Zanthoxylum armatum DC,Hepatotoxicity,Endoplasmic reticulum stress,Autophagy,Apoptosis
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要