On-Command Disassembly of Microrobotic Superstructures for Transport and Delivery of Magnetic Micromachines

ADVANCED MATERIALS(2023)

引用 0|浏览16
暂无评分
摘要
Magnetic microrobots have been developed for navigating microscale environments by means of remote magnetic fields. However, limited propulsion speeds at small scales remain an issue in the maneuverability of these devices as magnetic force and torque are proportional to their magnetic volume. Here, a microrobotic superstructure is proposed, which, as analogous to a supramolecular system, consists of two or more microrobotic units that are interconnected and organized through a physical (transient) component (a polymeric frame or a thread). The superstructures consist of microfabricated magnetic helical micromachines interlocked by a magnetic gelatin nanocomposite containing iron oxide nanoparticles (IONPs). While the microhelices enable the motion of the superstructure, the IONPs serve as heating transducers for dissolving the gelatin chassis via magnetic hyperthermia. In a practical demonstration, the superstructure's motion with a gradient magnetic field in a large channel, the disassembly of the superstructure and release of the helical micromachines by a high-frequency alternating magnetic field, and the corkscrew locomotion of the released helices through a small channel via a rotating magnetic field, is showcased. This adaptable microrobotic superstructure reacts to different magnetic inputs, which can be used to perform complex delivery procedures within intricate regions of the human body. A magnetically driven microrobotic superstructure is designed for navigation in microscale environments. The superstructure consists of microhelices interlocked with a gelatin composite chassis containing iron oxide nanoparticles. The helices serve as the motion component, while the nanoparticles enable the gelatin to dissolve via magnetic hyperthermia. Upon dissolution, the helices are released and navigate through smaller conduits using a rotating field.image
更多
查看译文
关键词
magnetic hyperthermia,magnetic navigation,microrobots,targeted delivery,two-photon lithography
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要