Collagen Tubular Airway-on-Chip for Extended Epithelial Culture and Investigation of Ventilation Dynamics

Wuyang Gao, Kayshani R. Kanagarajah,Emma Graham, Kayla Soon, Teodor Veres,Theo J. Moraes,Christine E. Bear,Ruud A. Veldhuizen,Amy P. Wong,Axel Gunther

SMALL(2024)

引用 0|浏览12
暂无评分
摘要
The lower respiratory tract is a hierarchical network of compliant tubular structures that are made from extracellular matrix proteins with a wall lined by an epithelium. While microfluidic airway-on-a-chip models incorporate the effects of shear and stretch on the epithelium, week-long air-liquid-interface culture at physiological shear stresses, the circular cross-section, and compliance of native airway walls have yet to be recapitulated. To overcome these limitations, a collagen tube-based airway model is presented. The lumen is lined with a confluent epithelium during two-week continuous perfusion with warm, humid air while presenting culture medium from the outside and compensating for evaporation. The model recapitulates human small airways in extracellular matrix composition and mechanical microenvironment, allowing for the first time dynamic studies of elastocapillary phenomena associated with regular breathing and mechanical ventilation, as well as their impacts on the epithelium. A case study reveales increasing damage to the epithelium during repetitive collapse and reopening cycles as opposed to overdistension, suggesting expiratory flow resistance to reduce atelectasis. The model is expected to promote systematic comparisons between different clinically used ventilation strategies and, more broadly, to enhance human organ-on-a-chip platforms for a variety of tubular tissues. A collagen tube-based airway-on-chip model that replicates the airway physiological microenvironment is presented. The in vitro model enables week-lung culture of a bronchial epithelium under airflow. This model allows investigating the effects of strain as well as cyclic collapse and reopening during mechanical ventilation, and the associated ventilation induced lung injury of the human airway epithelium. image
更多
查看译文
关键词
air-liquid interface culture,airway on a chip,collagen tube,collapsible tube,ventilator-induced lung injury
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要