SRLoRa: Neural-enhanced LoRa Weak Signal Decoding with Multi-gateway Super Resolution
PROCEEDINGS OF THE 2023 INTERNATIONAL SYMPOSIUM ON THEORY, ALGORITHMIC FOUNDATIONS, AND PROTOCOL DESIGN FOR MOBILE NETWORKS AND MOBILE COMPUTING, MOBIHOC 2023(2023)
Abstract
LoRa and its enabled LoRa wide-area network (LoRaWAN) have been seen as an important part of the next-generation network for massive Internet-of-Things (IoT). Due to LoRa's low-power and long-range nature, LoRa signals are much weaker than the noise floor, particularly in complex urban or semi-indoor environments. Therefore, weak signal decoding is critical to achieve the desired wide-area coverage in general. Existing work has shown the advantages of exploring deep neural networks (DNN) for weak signal decoding. However, the existing single-gateway based DNN-decoder is hard to fully leverage the spatial information in multi-gateway scenarios. In this paper, we propose SRLoRa, an efficient DNN LoRa decoder that fully utilizes the spatial information from multiple gateways to decode extremely weak LoRa signals. Specifically, we design interleaving denoising and merging layers to improve signal quality at ultra-low SNR. We develop efficient merging on feature maps extracted by denoising DNNs to tolerate time misalignments among different signals. We define max and min operations in the merging layer to efficiently extract salient features and reduce noise, merging the features extracted from multiple gateways to guide future DNN layers to gradually improve signal quality. We implement SRLoRa with USPR N210 and commercial LoRa nodes and evaluate its performance indoors and outdoors. The results show that with four gateways, SRLoRa achieves SNR gain at 4.53-4.82 dB, which is 2.51x of Charm, leading to a 1.84x coverage area compared to standard LoRa in an urban deployment.
MoreTranslated text
Key words
Internet-of-Things,Low-Power Wide Area Networks,LoRa,Machine Learning
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined