Efficient Large-Scale Many-Body Quantum Dynamics via Local-Information Time Evolution

Claudia Artiaco,Christoph Fleckenstein, David Aceituno Chávez, Thomas Klein Kvorning,Jens H. Bardarson

PRX Quantum(2023)

引用 0|浏览1
暂无评分
摘要
During time evolution of many-body systems entanglement grows rapidly, limiting exact simulations to small-scale systems or small timescales. Quantum information tends however to flow towards larger scales without returning to local scales, such that its detailed large-scale structure does not directly affect local observables. This allows for the removal of large-scale quantum information in a way that preserves all local observables and gives access to large-scale and large-time quantum dynamics. To this end, we use the recently introduced information lattice to organize quantum information into different scales, allowing us to define local information and information currents which we employ to systematically discard long-range quantum correlations in a controlled way. Our approach relies on decomposing the system into subsystems up to a maximum scale and time evolving the subsystem density matrices by solving the subsystem von Neumann equations in parallel. Importantly, the information flow needs to be preserved during the discarding of large-scale information. To achieve this without the need to make assumptions about the microscopic details of the information current, we introduce a second scale at which information is discarded while using the state at the maximum scale to accurately obtain the information flow. The resulting algorithm, which we call local information time evolution (LITE), is highly versatile and suitable for investigating many-body quantum dynamics in both closed and open quantum systems with diverse hydrodynamic behaviors. We present results for energy transport in the mixed-field Ising model and magnetization transport in an open XX spin chain where we accurately determine the diffusion coefficients. The information lattice framework employed here promises to offer insightful results about the spatial and temporal behavior of entanglement in many-body systems.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要