A preliminary exploration into top-down and bottom-up deep-learning approaches to localising neuro-interventional point targets in volumetric MRI

International Journal of Computer Assisted Radiology and Surgery(2024)

引用 0|浏览3
暂无评分
摘要
Purpose Point localisation is a critical aspect of many interventional planning procedures, specifically representing anatomical regions of interest or landmarks as individual points. This could be seen as analogous to the problem of visual search in cognitive psychology, in which this search is performed either: bottom-up , constructing increasingly abstract and coarse-resolution features over the entire image; or top-down , using contextual cues from the entire image to refine the scope of the region being investigated. Traditional convolutional neural networks use the former, but it is not clear if this is optimal. This article is a preliminary investigation as to how this motivation affects 3D point localisation in neuro-interventional planning. Methods Two neuro-imaging datasets were collected: one for cortical point localisation for repetitive transcranial magnetic stimulation and the other for sub-cortical anatomy localisation for deep brain stimulation. Four different frameworks were developed using top-down versus bottom-up paradigms as well as representing points as co-ordinates or heatmaps. These networks were applied to point localisation for transcranial magnetic stimulation and subcortical anatomy localisation. These networks were evaluated using cross-validation and a varying number of training datasets to analyse their sensitivity to quantity of training data. Results Each network shows increasing performance as the amount of available training data increases, with the co-ordinate-based top-down network consistently outperforming the others. Specifically, the top-down architectures tend to outperform the bottom-up ones. An analysis of their memory consumption also encourages the top-down co-ordinate based architecture as it requires significantly less memory than either bottom-up architectures or those representing their predictions via heatmaps. Conclusion This paper is a preliminary foray into a fundamental aspect of machine learning architectural design: that of the top-down/bottom-up divide from cognitive psychology. Although there are additional considerations within the particular architectures investigated that could affect these results and the number of architectures investigated is limited, our results do indicate that the less commonly used top-down paradigm could lead to more efficient and effective architectures in the future.
更多
查看译文
关键词
Deep learning,Brain,Localization,MRI,Top-down,Bottom-up
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要