Optimal Orbit Design and Mission Scheduling for Sun-Synchronous Orbit On-Orbit Refueling System

IEEE TRANSACTIONS ON AEROSPACE AND ELECTRONIC SYSTEMS(2023)

引用 0|浏览14
暂无评分
摘要
This article proposes a two-stage optimization framework to simultaneously solve the orbit design and mission scheduling problems of on-orbit refueling (OOR) systems in Sun-synchronous orbit (SSO). The fuel can be delivered to the client satellite (CS) by small-scale service satellites from the on-orbit fuel station (FS), which leads to a new FS-servicer-CS OOR mode. For the first stage, a modified spectral clustering-nonlinear programming (NLP) method is used to assign CSs to FSs, and design the orbit of FSs under J(2) perturbation. For the second stage, the mission scheduling problem is formulated as a mixed-integer NLP model and solved via the genetic quantum algorithm. Different from the existing literature, this article introduces a clustering distance metric combining multiple orbit characteristics for CS assignment, which can indirectly reduce the estimated fuel costs in the FS orbit design. Furthermore, the objective of reducing the number of servicers is first considered in the second stage. The effectiveness and superiority of the proposed two-stage framework are verified through several numerical simulations and comparison studies.
更多
查看译文
关键词
Orbits,Fuels,Satellites,Planning,Costs,Perturbation methods,Optimization,Genetic quantum algorithm (GQA),mission scheduling,orbit design,spectral clustering,sun-synchronous orbit (SSO)
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要