谷歌浏览器插件
订阅小程序
在清言上使用

NARFL Deficiency Caused Mitochondrial Dysfunction in Lung Cancer Cells by HIF-1α–DNMT1 Axis

Scientific reports(2023)

引用 0|浏览4
暂无评分
摘要
NARFL was reported to be a component of cytosolic iron–sulfur cluster assembly pathway and a causative gene of the diffused pulmonary arteriovenous malformations (dPAVMs). NARFL knockout dramatically impaired mitochondrial integrity in mice, which might promote mitochondrial dysfunction and lead to worse survival rate of lung cancer. However, the underlying molecular mechanism of NARFL deficiency in non-small cell lung cancer (NSCLC) is unknown. Knockdown assay was performed in A549 and H1299 cells. The protein levels of HIF-1α and DNMT1 were measured, and then Complex I activity, mtDNA copy numbers and mRNA levels of mtND genes were determined. Cisplatin resistance and cell proliferation were conducted using CCK8 assay. Cell migration and invasion were detected using wound heal assay and transwell assay. Survival analysis of lung cancer patients and KM plotter database were used for evaluating the potential value of NARFL deficiency. NARFL protein was expressed in two cell lines and knockdown assay significantly reduced its levels. Knockdown NARFL increased the protein levels of HIF-1α and DNMT1, and downregulated the mRNA levels of ND genes, mitochondrial Complex I activity, mtDNA copy number, and ATP levels. The mitochondrial dysfunction caused by NARFL deficiency were ameliorated by siHIF-1α and DNMT1 inhibitor. Knockdown NARFL increased the drug resistance and cell migration, and siHIF-1α reversed this effect. Moreover, NSCLC patients with NARFL deficiency had a poor survival rate using a tissue array and KM plotter database, and it would be a target for cancer prognosis and treatment. NARFL deficiency caused dysregulation of energy metabolism in lung cancer cells via HIF-1α–DNMT1 axis, which promoted drug resistance and cell migration. It provided a potential target for treatment and prognosis of lung cancer.
更多
查看译文
关键词
Cancer genetics,Cancer metabolism,Cancer prevention,Cancer therapy,Lung cancer,Science,Humanities and Social Sciences,multidisciplinary
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要