Optimization of rapid self-healing and self-adhesive gluten/guar gum crosslinked gel for strain sensors and electronic devices.

International journal of biological macromolecules(2023)

引用 0|浏览0
暂无评分
摘要
In this study, a smart strain sensor based on gluten/guar gum (GG) copolymer containing a combination of additives was developed. The mix proportions of strain sensors were designed using Taguchi method coupled with Grey relational analysis. L16 orthogonal array with three factors, viz. tannic acid (TA), glycerol and sodium chloride (NaCl) at four-levels each was optimized. The addition of TA substantially enhanced tensile strength, self-adhesion ability and conductivity. The self-adhesion ability could also be improved by adding NaCl in range of 0-5 wt%. The presence of glycerol in strain sensors could reduce the self-healing time which was found in the range of 28.75-150 s. In addition, the incorporation of glycerol into gel also improved stretchability of strain sensors. The best mix proportion of strain sensor was found to be 3.75 wt% TA, 30 vol% glycerol and 5 wt% NaCl. The best mixture of stain sensor showed the highest gauge factor (GF) of 0.61 % at a stretchability of 665 % and rapid self-healing at 70 s. This strain sensor could be applied to monitor human limb movements in a wide temperature range from -20 °C to 50 °C. Furthermore, the obtained gel was successfully used as electronic devices and self-powered sensors.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要