Yeast cells-xanthan gum coacervation for hydrosoluble bioactive encapsulation.

International journal of biological macromolecules(2023)

引用 0|浏览4
暂无评分
摘要
This study assessed the technological feasibility of microencapsulating vitamin C (VC) via coacervation between yeast cells (YC) and xanthan gum (XG). The interaction efficiency between YC and XG was examined across various pHs and ratios, while characterizing the microcapsules in terms of encapsulation efficiency, particle size, and thermal and chemical stability. Additionally, in vitro digestion experiments were conducted to determine the digestion efficiency and bioavailability of the bioactive compound. The optimally produced microcapsules exhibited favorable functional attributes, including low water activity (≤ 0.3) and particle size (≤ 33.52 μm), coupled with a high encapsulation efficiency (∼ 86.12 %). The microcapsules were able to increase the stability of VC at high temperatures and during storage when compared to the control. The in vitro experiment revealed that the microcapsules effectively retained approximately 50 % of the VC in simulated gastric fluid, with up to 80 % released in simulated intestinal fluid. However, due to prior degradation in the simulated gastric fluid, the achieved bioavailability was around 68 %. These results are promising, underscoring the potential of these microcapsules as a viable technology for encapsulating, protect, and releasing water-soluble bioactives in the GI tract.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要