The effective regulation of heterogeneous N-heterocyclic carbenes: structures, electronic properties and transition metal adsorption.

Physical chemistry chemical physics : PCCP(2023)

引用 0|浏览2
暂无评分
摘要
Heterogeneous N-heterocyclic carbene materials have attracted increasing interest in the fields of materials science and catalysis due to their unique properties and potential applications. However, current heterogeneous systems primarily focus on a single class of carbene. In this work, we simultaneously introduce two classes of typical five-membered carbenes into a graphene lattice, forming a series of novel two-dimensional heterogeneous N-heterocyclic carbene nanomaterials (2D-NCMs) composed of multiple carbenes. First-principles calculations demonstrate the thermodynamic stability of the designed 2D-NCMs, as well as their diverse electronic properties ranging from metallic to semiconducting. The incorporation of carbenes in the 2D-NCMs enables them to adsorb both acidic BCl and basic CO molecules, thus exhibiting unique amphoteric properties. Furthermore, the 2D-NCMs exhibit remarkable adsorption capacities for ten transition metals, highlighting their promising potential for future catalytic applications. By adjusting the proportions of the two classes of carbenes, we can effectively regulate the electronic properties and adsorption capacities of small molecules and transition metals in the 2D-NCMs. This study presents a novel strategy for designing and regulating the properties of heterogeneous N-heterocyclic carbenes, offering significant implications in the fields of catalysis and materials science.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要