谷歌浏览器插件
订阅小程序
在清言上使用

Gottesman-Kitaev-Preskill Encoding in Continuous Modal Variables of Single Photons

Physical Review Letters(2024)

引用 0|浏览10
暂无评分
摘要
GKP states, introduced by Gottesman, Kitaev, and Preskill, are continuous variable logical qubits that can be corrected for errors caused by phase space displacements. Their experimental realization is challenging, in particular, using propagating fields, where quantum information is encoded in the quadratures of the electromagnetic field. However, traveling photons are essential in many applications of GKP codes involving the long-distance transmission of quantum information. We introduce a new method for encoding GKP states in propagating fields using single photons, each occupying a distinct auxiliary mode given by the propagation direction. The GKP states are defined as highly correlated states described by collective continuous modes, as time and frequency. We analyze how the error detection and correction protocol scales with the total photon number and the spectral width. We show that the obtained code can be corrected for displacements in time-frequency phase space, which correspond to dephasing, or rotations, in the quadrature phase space and to photon losses. Most importantly, we show that generating two-photon GKP states is relatively simple, and that such states are currently produced and manipulated in several photonic platforms where frequency and time-bin biphoton entangled states can be engineered.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要