谷歌浏览器插件
订阅小程序
在清言上使用

A Fast Fourier Transform-Based Solver for Elastic Micropolar Composites

COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING(2024)

引用 0|浏览13
暂无评分
摘要
This work presents a spectral micromechanical formulation for obtaining the full-field and homogenized response of elastic micropolar composites. The algorithm relies on a coupled set of convolution integral equations for the micropolar strains, where periodic Green’s operators associated with a linear homogeneous reference medium are convolved with functions of the Cauchy and couple stress fields that encode the material’s heterogeneity, as well as any potential material nonlinearity. Such convolution integral equations take an algebraic form in the reciprocal Fourier space that can be solved iteratively. In this vein, the fast Fourier transform (FFT) algorithm is leveraged to accelerate the numerical solution, resulting in a mesh-free formulation in which the periodic unit cell representing the heterogeneous material can be discretized by a regular grid of pixels in two dimensions (or voxels in three dimensions). For verification, the numerical solutions obtained with the micropolar FFT solver are compared with analytical solutions for a matrix with a dilute circular inclusion subjected to plane strain loading. The developed computational framework is then used to study length-scale effects and effective (micropolar) moduli of composites with various topological configurations.
更多
查看译文
关键词
Micropolar,Composites,Fast Fourier transform,Green’s function,Homogenization
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要