Dynamics of cutaneous atmospheric oxygen uptake in response to mechanical stretch revealed by optical fiber microsensor.

Experimental dermatology(2023)

引用 0|浏览17
暂无评分
摘要
Skin expands and regenerates in response to mechanical stretch. This important homeostasis process is critical for skin biology and can be exploited to generate extra skin for reconstructive surgery. Atmospheric oxygen uptake is important in skin homeostasis. However, whether and how cutaneous atmospheric oxygen uptake changes during mechanical stretch remains unclear, and relevant research tools to quantify oxygen flux are limited. Herein, we used the scanning micro-optrode technique (SMOT), a non-invasive self-referencing optical fiber microsensor, to achieve real-time measurement of cutaneous oxygen uptake from the atmosphere. An in vivo mechanical stretch-induced skin expansion model was established, and an in vitro Flexcell Tension system was used to stretch epidermal cells. We found that oxygen influx of skin increased dramatically after stretching for 1 to 3 days and decreased to the non-stretched level after 7 days. The enhanced oxygen influx of stretched skin was associated with increased epidermal basal cell proliferation and impaired epidermal barrier. In conclusion, mechanical stretch increases cutaneous oxygen uptake with spatial-temporal characteristics, correlating with cell proliferation and barrier changes, suggesting a fundamental mechanistic role of oxygen uptake in the skin in response to mechanical stretch. Optical fiber microsensor-based oxygen uptake detection provides a non-invasive approach to understand skin homeostasis.
更多
查看译文
关键词
cutaneous oxygen uptake, mechanical stretch, optical fiber sensor, skin expansion, surgery
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要