Mechanical behavior and microstructure of porcine brain tissues under pulsed electric fields

Biomechanics and Modeling in Mechanobiology(2024)

引用 0|浏览1
暂无评分
摘要
Pulsed electric fields are extensively utilized in clinical treatments, such as subthalamic deep brain stimulation, where electric field loading is in direct contact with brain tissue. However, the alterations in brain tissue’s mechanical properties and microstructure due to changes in electric field parameters have not received adequate attention. In this study, the mechanical properties and microstructure of the brain tissue under pulsed electric fields were focused on. Herein, a custom indentation device was equipped with a module for electric field loading. Parameters such as pulse amplitude and frequency were adjusted. The results demonstrated that following an indentation process lasting 5 s and reaching a depth of 1000 μm, and a relaxation process of 175 s, the average shear modulus of brain tissue was reduced, and viscosity decreased. At the same amplitude, high-frequency pulsed electric fields had a smaller effect on brain tissue than low-frequency ones. Furthermore, pulsed electric fields induced cell polarization and reduced the proteoglycan concentration in brain tissue. As pulse frequency increased, cell polarization diminished, and proteoglycan concentration decreased significantly. High-frequency pulsed electric fields applied to brain tissue were found to reduce impedance fluctuation amplitude. This study revealed the effect of pulsed electric fields on the mechanical properties and microstructure of ex vivo brain tissue, providing essential information to promote the advancement of brain tissue electrotherapy in clinical settings.
更多
查看译文
关键词
Brain tissue,Deep brain stimulation,Indentation,Mechanical properties,Microstructure
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要