A novel double-network hydrogel made from electrolytic manganese slag and polyacrylic acid-polyacrylamide for removal of heavy metals in wastewater

JOURNAL OF HAZARDOUS MATERIALS(2024)

引用 1|浏览7
暂无评分
摘要
Electrolytic manganese slag (EMS), a bulk waste generated in industrial electrolytic manganese production, can be a cost-effective adsorbent for heavy metals removal after appropriate modification. In this study, EMS was activated by NaOH and then used to make the EMS-based double-network hydrogel (an EMS/PAA hydrogel) via a one-pot method. The results showed that the EMS/PAA hydrogel exhibits a high selective adsorption capacity of 153.85, 113.63 and 54.35 mg & sdot;g 1 for Pb (II), Cd (II) and Cu (II), respectively. In addition, Density Functional Theory (DFT) suggests that the adsorption energies (Ead) of Pb, Cd and Cu on SiO2/PAA of the EMS/PAA gels are 4.15, 1.96, and 2.83 eV, respectively, and SiO2/PAA, with a strong affinity to Pb2+, is one of the reasons for the selective adsorption capacity of EMS/PAA gel for Pb2+. The removal efficiency of the EMS/PAA gel for Pb2+, Cd2+, Cu2+ decreased after four adsorption-desorption cycles by 20.00 %, 24.56 % and 46.56 %, respectively. Mechanism studies suggested that the elimination of the heavy metals by EMS/PAA gels mainly involves electrostatic attraction, inner-sphere complexation, and coordination interactions. The EMS/PAA hydrogels not only have high adsorption capacity, but are also easy to prepare and circulate, making them ideal for practical applications.
更多
查看译文
关键词
Electrolytic manganese slag,Hydrogel,Adsorption,Heavy metals,Wastewater
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要