Tailored Microcantilever Optimization for Multifrequency Force Microscopy.

Gourav Bhattacharya, Indrianita Lionadi, Andrew Stevenson,Joanna Ward,Amir Farokh Payam

Advanced science (Weinheim, Baden-Wurttemberg, Germany)(2023)

引用 1|浏览9
暂无评分
摘要
Microcantilevers are at the heart of atomic force microscopy (AFM) and play a significant role in AFM-based techniques. Recent advancements in multifrequency AFM require the simultaneous excitation and detection of multiple eigenfrequencies of microcantilevers to assess more data channels to quantify the material properties. However, to achieve higher spatiotemporal resolution there is a need to optimize the structure of microcantilevers. In this study, the architecture of the cantilever with gold nanoparticles using a dip-coating method is modified, aiming to tune the higher eigenmodes of the microcantilever as integer multiples of its fundamental frequency. Through the theoretical methodology and simulative model, that integer harmonics improve the coupling in multifrequency AFM measurements is demonstrated, leading to enhanced image quality and resolution. Furthermore, via the combined theoretical-experimental approach, the interplay between induced mass and stiffness change of the modified cantilever depending on the attached particle location, size, mass, and geometry is found. To validate the results of this predictive model, tapping-mode AFM is utilized and bimodal Amplitude Modulation AFM techniques to examine and quantify the impact of tuning higher-order eigenmodes on the imaging quality of a polystyrene-polymethylmethacrylate (PS-PMMA) block co-polymer assembly deposited on a glass slide and Highly Ordered Pyrolytic Graphite (HOPG).
更多
查看译文
关键词
atomic force microscopy,dip‐coating,eigenfrequency,harmonics,microcantilever
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要