Broadband CPW-based impedance-transformed Josephson parametric amplifier

arXiv (Cornell University)(2023)

引用 0|浏览1
暂无评分
摘要
Quantum-limited Josephson parametric amplifiers play a pivotal role in advancing the field of circuit quantum electrodynamics by enabling the fast and high-fidelity measurement of weak microwave signals. Therefore, it is necessary to develop robust parametric amplifiers with low noise, broad bandwidth, and reduced design complexity for microwave detection. However, current broadband parametric amplifiers either have degraded noise performance or rely on complex designs. Here, we present a device based on the broadband impedance-transformed Josephson parametric amplifier (IMPA) that integrates a horn-like coplanar waveguide (CPW) transmission line, which significantly decreases the design and fabrication complexity, while keeping comparable performance. The device shows an instantaneous bandwidth of 700(200) MHz for 15(20) dB gain with an average saturation power of -110 dBm and near quantum-limited added noise. The operating frequency can be tuned over 1.4 GHz using an external flux bias. We further demonstrate the negligible back-action from our device on a transmon qubit. The amplification performance and simplicity of our device promise its wide adaptation in quantum metrology, quantum communication, and quantum information processing.
更多
查看译文
关键词
parametric amplifier,josephson,cpw-based,impedance-transformed
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要