Advancing Precise Orbit Determination and Precise Point Positioning of BDS-3 Satellites from B1IB3I to B1CB2a: Comparison and Analysis

Chen Wang, Tengjie Luo, Shitong Chen,Pan Li

Remote Sensing(2023)

引用 0|浏览2
暂无评分
摘要
The third generation of the Chinese BeiDou Navigation Satellite System (BDS-3) broadcasts new signals, i.e., B1C, B2a, and B2b, along with the legacy signals of BDS-2 B1I and B3I. The novel signals are demonstrated to show adequate upgraded performance, due to the restrictions on the ground tracking network for the BDS-3 satellites in new frequency bands, and in order to maintain the consistency of the hybrid BDS-2 and BDS-3 orbit/clock products using the common B1IB3I data, the use of B1CB2a observations is not sufficient for both precise orbit determination (POD) and precise point positioning (PPP) applications. In this study, one-year data of 2022 from the International GNSS Service (IGS) and the International GNSS Monitoring and Assessment System (iGMAS) are used in the precise orbit and clock determination for BDS-3 satellites based on the two sets of observations (i.e., B1IB3I and B1CB2a), and the orbit and clock accuracy along with the PPP ambiguity resolution (AR) performance are investigated. In general, the validations demonstrate that clear improvement can be achieved for the B1CB2a-based solution for both POD and PPP. In comparison to the B1IB3I, using BDS-3 B1CB2a observations can help to improve orbit consistency by around 25% as indicated by orbit boundary discontinuities (OBDs), and this use can further reduce the bias and enhance the orbit accuracy as revealed by satellite laser ranging (SLR) residuals. Similar improvement was also identified in the satellite clock performance. The B1CB2a-based solution obtains decreased Allan deviation (ADEV) values in comparison with the B1IB3I-based solution by 6 similar to 12%. Regarding the PPP-AR performance, the advantage of B1CB2a observations is evidently reflected through the estimates of wide-lane/narrow-lane fractional cycle bias (FCB), convergence time, and positioning accuracy, in which a significant reduction over 10 min is found in the PPP convergence time.
更多
查看译文
关键词
BDS-3, precise orbit determination, precise point positioning, ambiguity resolution, B1C/B2a frequencies
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要