A Bayesian Approach to Modeling Unit Manufacturing Process Environmental Impacts using Limited Data with Case Studies on Laser Powder Bed Fusion Cumulative Energy Demand

Procedia CIRP(2023)

引用 3|浏览0
暂无评分
摘要
Informed decision-making for sustainable manufacturing requires accurate manufacturing process environmental impact models with uncertainty quantification (UQ). For emerging manufacturing technologies, there is often insufficient process data available to derive accurate data-driven models. This paper explores an alternative mechanistic modeling approach using easy-to-access data from a given machine to perform Bayesian inference and reduce the uncertainty of model parameters. First, we derive mechanistic models of the cumulative energy demand (CED) for making aluminum (AlSi10) and nylon (PA12) parts using laser powder bed fusion (L-PBF). Initial parametric uncertainty is assigned to the model inputs informed by literature reviews and interviews with industry experts. Second, we identify the most critical sources of uncertainty using variance-based global sensitivity analyses; therefore, reducing the dimension of the problem. For metal and polymer L-PBF, critical uncertainty is related to the adiabatic efficiency of the process (a measure of the efficiency with which the laser energy is used to fuse the powder) and the recoating time per layer between laser scans. Data pertinent to both of these parameters include the part geometry (height and volume) and total build time. Between three and eight data points on part geometry and build time were collected on two different L-PBF machines and Bayesian inference was performed to reduce the uncertainty of the adiabatic efficiency and recoating time per layer on each machine. This approach was validated by subsequently taking direct parameter measurements on these machines during operation. The delivered electricity uncertainty is reduced by 40-70% after performing inference, highlighting the potential to construct accurate energy and environmental impact models of manufacturing processes using small easy-to-access datasets without interfering with the operations of the manufacturing facility.
更多
查看译文
关键词
Additive Manufacturing,Sobol indices,Bayesian inference,Power measurements,Cumulative energy demand
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要