Strong in-plane magnetic anisotropy (Co0.15Fe0.85)5GeTe2/graphene van der Waals heterostructure spin-valve at room temperature

arXiv (Cornell University)(2023)

引用 0|浏览5
暂无评分
摘要
Van der Waals (vdW) magnets are promising owing to their tunable magnetic properties with doping or alloy composition, where the strength of magnetic interactions, their symmetry, and magnetic anisotropy can be tuned according to the desired application. However, most of the vdW magnet based spintronic devices are so far limited to cryogenic temperatures with magnetic anisotropies favouring out-of-plane or canted orientation of the magnetization. Here, we report room-temperature lateral spin-valve devices with strong in-plane magnetic anisotropy of the vdW ferromagnet (Co0.15Fe0.85)5GeTe2 (CFGT) in heterostructures with graphene. Magnetization measurements reveal above room-temperature ferromagnetism in CFGT with a strong in-plane magnetic anisotropy. Density functional theory calculations show that the magnitude of the anisotropy depends on the Co concentration and is caused by the substitution of Co in the outermost Fe layer. Heterostructures consisting of CFGT nanolayers and graphene were used to experimentally realize basic building blocks for spin valve devices such as efficient spin injection and detection. The spin transport and Hanle spin precession measurements prove a strong in-plane and negative spin polarization at the interface with graphene, which is supported by the calculated spin-polarized density of states of CFGT. The in-plane magnetization of CFGT at room temperature proves its usefulness in graphene lateral spin-valve devices, thus opening further opportunities for spintronic technologies.
更多
查看译文
关键词
co015fe0855gete2/graphene van
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要