TrCla4 promotes actin polymerization at the hyphal tip and mycelial growth in Trichophyton rubrum

Microbiology spectrum(2023)

引用 0|浏览6
暂无评分
摘要
Dermatophytes invade and colonize host superficial tissues via hyphal growth. Although cytoskeletal reorganization and its regulation are essential for hyphal growth, the molecular mechanisms in dermatophytes and their applicability as antifungal drug targets remain poorly understood. The p21-activated kinase (PAK) is a downstream effector of the small GTPases Rac and CDC42, also known as p21, and is involved in various molecular and cellular functions, including actin polymerization and cell morphogenesis. In this study, we investigated the contribution of the PAK protein TrCla4 to morphogenesis and mycelial growth in Trichophyton rubrum, the most frequently isolated fungus in dermatophytosis (athlete's foot). The actin polymerization inhibitor, cytochalasin A inhibited actin accumulation at the hyphal tip and mycelial growth of T. rubrum, suggesting the involvement of the actin cytoskeleton in mycelial growth. In the Trcla4 knockout strain (Delta Trcla4), we observed defects in mycelial growth, hyphal branching, and the accumulation of polymerized actin at the hyphal tip. Chemical inhibitors of TrRac-dependent TrCla4 kinase activity, FRAX486 and IPA-3, also inhibited spore germination and mycelial growth. Interestingly, Delta Trcla4 showed no additional inhibition of mycelial growth when treated with these inhibitors, indicating that their inhibitory effects are primarily mediated through TrCla4. In an invertebrate dermatophyte infection model, animals infected with Delta Trcla4 had higher survival rates than those infected with the wild-type, and IPA-3 and FRAX486 treatments both significantly improved animal survival rates. These results suggest that the dermatophyte PAK promotes mycelial growth by facilitating actin polymerization at the hyphal tip, making it a potential therapeutic target for dermatophytosis.
更多
查看译文
关键词
dermatophytosis,p21-activated kinase,PAK inhibitor,IPA-3,actin polymerization,Trichophyton rubrum
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要