Gradient-Based Dovetail Joint Shape Optimization for Stiffness

8TH ACM SYMPOSIUM ON COMPUTATIONAL FABRICATION, SCF 2023(2023)

引用 0|浏览23
暂无评分
摘要
It is common to manufacture an object by decomposing it into parts that can be assembled. This decomposition is often required by size limits of the machine, the complex structure of the shape, etc. To make it possible to easily assemble the final object, it is often desirable to design geometry that enables robust connections between the subcomponents. In this project, we study the task of dovetail-joint shape optimization for stiffness using gradient-based optimization. This optimization requires a differentiable simulator that is capable of modeling the contact between the two parts of a joint, making it possible to reason about the gradient of the stiffness with respect to shape parameters. Our simulation approach uses a penalty method that alternates between optimizing each side of the joint, using the adjoint method to compute gradients. We test our method by optimizing the joint shapes in three different joint shape spaces, and evaluate optimized joint shapes in both simulation and real-world tests. The experiments show that optimized joint shapes achieve higher stiffness, both synthetically and in real-world tests.
更多
查看译文
关键词
Dovetail Joint,Gradient-based Optimization,End-to-End Differentiable,3D Printing
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要