The Self-incompatibility Locus and Chloroplast DNA Regions of Prunus domestica Reflect the Origin and Genetic Diversity of Traditional Cultivars

Julia Halasz, Gergo Szendy, Beti Ivanovska, Endre Gyorgy Toth,Attila Hegedus

Journal of the American Society for Horticultural Science(2023)

引用 0|浏览0
暂无评分
摘要
A traditional cultivar, Besztercei Bt.2, and a clone of an autochthonous landrace (Nemtudom P3) of the hexaploid European plum (Prunus domestica) were studied to highlight their breeding perspectives. Five self-incompatibility ribonuclease (S-RNase) alleles were detected in both cultivars, with one allele shared. DNA sequence analysis confirmed it as a new, previously unidentified allele in P. domestica, which we labeled as S18. This allele was found to share -99% identity with the Prunus spinosa SB-RNase allele. Because Prunus species are readily hybridiz-ing, sequence variations in 10 chloroplast DNA regions and nuclear internal transcribed spacers were studied to check if 'Nemtudom P3' and 'Besztercei Bt.2' are indeed P. domestica. The majority-rule consensus tree of maximum likelihood and Bayesian inferences confirmed it, and also indicated genetic differentiation with 'Nemtudom P3' and 'Besztercei Bt.2' forming a statistically supported subclade within the P. domestica germplasm. Our results pointed to some regions of the P. domestica chloroplast genome (trnS-trnG-trnG, trnC-ycf6, and trnD-trnT) that can be used to detect intraspecific variations. The proportion of parsimony informative characters compared with the total length of amplified regions was the highest in the case of nrITS with 12.1%. The S-genotyping of 68 wild-growing Nemtudom trees showed the genetic consequences of long-term vegetative propagation and occasional crossing between Beszter-cei and Nemtudom accessions. Controlled pollinations confirmed the self-compatibility of 'Nemtudom P3'. By clarify-ing their phylogenetic position, and characterizing the S-locus, our results will help breeding P. domestica cultivars and pave the way to understanding how the S-locus works in a hexaploid Prunus species.
更多
查看译文
关键词
European plum, marker-assisted breeding, phylogeny, polyploidy, S-ribonuclease
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要