Reservoir tortuosity prediction: Coupling stochastic generation of porous media and machine learning

Xiaojing Zou, Changyu He,Wei Guan,Yan Zhou, Hongyang Zhao, Mingyu Cai

ENERGY(2023)

引用 0|浏览6
暂无评分
摘要
Accurate reservoir tortuosity prediction is the foundation of the high-quality evaluation of reservoir petrophysical properties. However, conventional empirical equations as a form of experimental data fitting lacks universality because the data are usually from a single horizon or block. We developed a model combining the stochastic generation of porous media with machine learning (ML) to predict reservoir tortuosity based on pore structure parameters. Real core scanning images from public databases were employed in stochastic generation as reference, which is an economic and accurate method of meeting the dataset quality and scale requirements of ML. The particle swarm optimization algorithm, an efficient method of obtaining the best hyperparameter combination, was introduced for the hyperparameter tuning of six commonly used ML algorithms to determine the optional model for tortuosity prediction. Our trained ML models demonstrated superior tortuosity prediction accuracy over deterministic linear and exponential empirical equations with porosity as the only variable, which effectively demonstrates the potential of tortuosity prediction using pore structure parameters. The proposed ML model enables precise tortuosity predictions based on a few measurable pore structural features, which can be obtained from well logging data and CT scanning; thus, it can be widely used in petroleum and logging fields.
更多
查看译文
关键词
Tortuosity,Porous media,Stochastic generation,Machine learning,Pore structural features
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要