Cyanobacterial blooms, iron, and environmental pollutants

Biometals : an international journal on the role of metal ions in biology, biochemistry, and medicine(2023)

引用 0|浏览4
暂无评分
摘要
Iron determines the abundance and diversity of life and controls primary production in numerous aqueous environments. Over the past decades, the availability of this metal in natural waters has decreased. Iron deficiency can apply a selective pressure on microbial aquatic communities. Each aquatic organism has their individual requirements for iron and pathways for metal acquisition, despite all having access to the common pool of iron. Cyanobacteria, a photosynthesizing bacterium that can accumulate and form so-called ‘algal blooms’, have evolved strategies to thrive in such iron-deficient aqueous environments where they can outcompete other organisms in iron acquisition in diverse microbial communities. Metabolic pathways for iron acquisition employed by cyanobacteria allow it to compete successfully for this essential nutrient. By competing more effectively for requisite iron, cyanobacteria can displace other species and grow to dominate the microbial population in a bloom. Aquatic resources are damaged by a diverse number of environmental pollutants that can further decrease metal availability and result in a functional deficiency of available iron. Pollutants can also increase iron demand. A pollutant-exposed microbe is compelled to acquire further metal critical to its survival. Even in pollutant-impacted waters, cyanobacteria enjoy a competitive advantage and cyanobacterial dominance can be the result. We propose that cyanobacteria have a distinct competitive advantage over many other aquatic microbes in polluted, iron-poor environments.
更多
查看译文
关键词
Harmful algal blooms,Iron,Siderophores,Polysaccharides,Toxins,Environmental pollution,Aqueous environments and iron
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要