Exploring Universal Principles for Graph Contrastive Learning: A Statistical Perspective

MM '23: Proceedings of the 31st ACM International Conference on Multimedia(2023)

引用 0|浏览18
暂无评分
摘要
Although recent advances have prompted the prosperity in graph contrastive learning, the researches on universal principles for model design and desirable properties of latent representations are still inadequate. From a statistical perspective, this paper proposes two principles for guidance and constructs a general self-supervised framework for negative-free graph contrastive learning. Reformulating data augmentation as a mixture process, the first one, termed consistency principle, lays stress on exploring and mapping cross-view common information to consistent and essence-revealing representations. For the purpose of instantiation, four statistical indicators are employed to estimate and maximize the correlation between representations from various views, whose accordant variation trend during training implies the extraction of common content. With awareness of the insufficiency of a solo consistency principle, suffering from degenerated and coupled solutions, a decorrelation principle is put forward to encourage diverse and informative representations. Accordingly, two specific strategies, performing in representation space and eigen spectral space, respectively, are propounded to decouple various representation channels. Under two principles, various combinations of concrete implementations derive a family of methods. The comparison experiments with current state-of-the-arts demonstrate the effectiveness and sufficiency of two principles for high-quality graph representations. Furthermore, visual studies reveal how certain principles affect learned representations.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要