Pagoda: Privacy Protection for Volumetric Video Streaming through Poisson Diffusion Model

MM '23: Proceedings of the 31st ACM International Conference on Multimedia(2023)

引用 0|浏览1
暂无评分
摘要
With the increasing popularity of 3D volumetric video applications, e.g., metaverse, AR/VR, etc., there is a growing need to protect users' privacy while sharing their experiences during streaming. In this paper, we show that the existing privacy-preserving approaches for dense point clouds suffer a massive computation cost and degrade the quality of the streaming experience. We design Pagoda, a new PrivAcy-preservinG VOlumetric ViDeo StreAming incorporating the MPEG V-PCC standard, which protects different domain privacy information of dense point cloud, and maintains high throughput. The core idea is to content-aware transform the privacy attribute information to the geometry domain and content-agnostic protect the geometry information by adding Poisson noise perturbations. These perturbations can be denoised through a Poisson diffusion probabilistic model we design to deploy on the cloud. Users only need to encrypt a small amount of high-sensitive information and achieve secure streaming. Our designs ensure the dense point clouds can be transmitted in high quality and the attackers cannot reconstruct the original one. We evaluate Pagoda using three volumetric video datasets. The results show that Pagoda outperforms existing privacy-preserving baselines for 75.6% protection capability improvement, 4.27 times streaming quality, and 26 times latency reduction.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要