Controlling Colloidal Crystal Nucleation and Growth with Photolithographically Defined Templates

ACS nano(2023)

引用 0|浏览1
暂无评分
摘要
Colloidal crystallization provides a means to synthesize hierarchical nanostructures by design and to use these complex structures for nanodevice fabrication. In particular, DNA provides a means to program interactions between particles with high specificity, thereby enabling the formation of particle superlattice crystallites with tailored unit cell geometries and surface faceting. However, while DNA provides precise control of particle-particle bonding interactions, it does not inherently present a means of controlling higher-level structural features such as the size, shape, position, or orientation of a colloidal crystallite. While altering assembly parameters such as temperature or concentration can enable limited control of crystallite size and geometry, integrating colloidal assemblies into nanodevices requires better tools to manipulate higher-order structuring and improved understanding of how these tools control the fundamental kinetics and mechanisms of colloidal crystal growth. In this work, photolithography is used to produce patterned substrates that can manipulate the placement, size, dispersity, and orientation of colloidal crystals. By adjusting aspects of the pattern, such as feature size and separation, we reveal a diffusion-limited mechanism governing crystal nucleation and growth. Leveraging this insight, patterns are designed that can produce wafer-scale substrates with arrays of nanoparticle superlattices of uniform size and shape. These design principles therefore bridge a gap between a fundamental understanding of nanoparticle assembly and the fabrication of nanostructures compatible with functional devices.
更多
查看译文
关键词
DNA, nanoparticle self-assembly, nanomaterials, lithography, crystallization kinetics, crystalpatterning, directed assembly
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要