CASMatching strategy for automated detection and quantification of carotid artery stenosis based on digital subtraction angiography

COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE(2024)

引用 0|浏览8
暂无评分
摘要
Background and objective: Automated detection and quantification of carotid artery stenosis is a crucial task in establishing a computer-aided diagnostic system for brain diseases. Digital subtraction angiography (DSA) is known as the "gold standard" for carotid stenosis diagnosis. It is commonly used to identify carotid artery stenosis and measure morphological indices of the stenosis. However, using deep learning to detect stenosis based on DSA images and further quantitatively predicting the morphological indices remain a challenge due the absence of prior work. In this paper, we propose a quantitative method for predicting morphological indices of carotid stenosis. Methods: Our method adopts a two-stage pipeline, first locating regions suitable for predicting morphological indices by object detection model, and then using a regression model to predict indices. A novel Carotid Artery Stenosis Matching (CASMatching) strategy is introduced into the object detection to model the matching relationship between a stenosis and multiple normal vessel segments. The proposed Match-ness branch predicts a Match-ness score for each normal vessel segment to indicate the degree of matching to the stenosis. A novel Direction Distance-IoU (2DIoU) loss based on the Distance-IoU loss is proposed to make the model focused more on the bounding box regression in the direction of vessel extension. After detection, the normal vessel segment with the highest Match-ness score and the stenosis are intercepted from the original image, then fed into a regression model to predict morphological indices and calculate the degree of stenosis. Results: Our method is trained and evaluated on a dataset collected from three different manufacturers' monoplane X-ray systems. The results show that the proposed components in the object detector substantially improve the detection performance of normal vascular segments. For the prediction of morphological indices, our model achieves Mean Absolute Error of 0.378, 0.221, 4.9 on reference vessel diameter (RVD), minimum lumen diameter (MLD) and stenosis degree. Conclusions: Our method can precisely localize the carotid stenosis and the normal vessel segment suitable for predicting RVD of the stenosis, and further achieve accurate quantification, providing a novel solution for the quantification of carotid artery stenosis.
更多
查看译文
关键词
Carotid artery stenosis,Digital subtraction angiography,Deep learning,Object detection,Visual regression
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要