NOD-TAMP: Generalizable Long-Horizon Planning with Neural Object Descriptors

arxiv(2023)

引用 0|浏览16
暂无评分
摘要
Solving complex manipulation tasks in household and factory settings remains challenging due to long-horizon reasoning, fine-grained interactions, and broad object and scene diversity. Learning skills from demonstrations can be an effective strategy, but such methods often have limited generalizability beyond training data and struggle to solve long-horizon tasks. To overcome this, we propose to synergistically combine two paradigms: Neural Object Descriptors (NODs) that produce generalizable object-centric features and Task and Motion Planning (TAMP) frameworks that chain short-horizon skills to solve multi-step tasks. We introduce NOD-TAMP, a TAMP-based framework that extracts short manipulation trajectories from a handful of human demonstrations, adapts these trajectories using NOD features, and composes them to solve broad long-horizon, contact-rich tasks. NOD-TAMP solves existing manipulation benchmarks with a handful of demonstrations and significantly outperforms prior NOD-based approaches on new tabletop manipulation tasks that require diverse generalization. Finally, we deploy NOD-TAMP on a number of real-world tasks, including tool-use and high-precision insertion. For more details, please visit https://sites.google.com/view/nod-tamp/.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要