Quantitative base-resolution sequencing technology for mapping pseudouridines in mammalian mRNA.

Methods in enzymology(2023)

引用 0|浏览11
暂无评分
摘要
Posttranscriptional RNA modifications occur in almost all types of RNA in all life forms. As an abundant RNA modification in mammals, pseudouridine (Ψ) regulates diverse biological functions of different RNA species such as ribosomal RNA (rRNA), transfer RNA (tRNA), small nuclear RNA (snRNA), etc. However, the functional investigation of mRNA pseudouridine (Ψ) has been hampered by the lack of a quantitative method that can efficiently map Ψ transcriptome-wide. We developed bisulfite-induced deletion sequencing (BID-seq), with the optimized bisulfite-based chemical reaction to convert pseudouridine selectively and completely into Ψ-BS adduct without cytosine deamination. The Ψ-BS adduct can be further read out as deletion signatures during reverse transcription. The deletion ratios induced by Ψ sites were used for estimating the modification stoichiometry at each modified site. BID-seq starts with 10-20 ng polyA+ RNA and detects thousands of mRNA Ψ sites with stoichiometry information in cell lines and tissues. We uncovered consensus motifs for Ψ in mammalian mRNA and assigned specific 'writer' proteins to individual Ψ deposition. BID-seq also confirmed the presence of Ψ within stop codons of mammalian mRNA. BID-seq set the stage for future investigations of Ψ functions in diverse biological processes.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要