谷歌浏览器插件
订阅小程序
在清言上使用

Experimental Realization of a Quantum Classification: Bell State Measurement Via Machine Learning

APL machine learning(2023)

引用 0|浏览10
暂无评分
摘要
The Bell state is a crucial resource for the realization of quantum information tasks, and when combined with orbital angular momentum (OAM), it enables a high-dimensional Hilbert space, which is essential for high-capacity quantum communication. In this study, we demonstrate the recognition of OAM Bell states using interference patterns generated by a classical light source and a single-photon source from a Sagnac interferometer-based OAM Bell state evolution device. The interference patterns exhibit a one-to-one correspondence with the input Bell states, providing conclusive evidence for the full recognition of OAM Bell states. Furthermore, we introduce machine learning to the field of Bell state recognition by proposing a neural network model capable of accurately recognizing higher order single-photon OAM Bell states, even in the undersampling case. In particular, the model’s training set includes interference patterns of OAM Bell states generated by classical light sources, yet it is able to recognize single-photon OAM Bell states with high accuracy, without relying on quantum resources during training. Our innovative application of neural networks to the recognition of single-photon OAM Bell states not only circumvents the resource consumption and experimental difficulties associated with quantum light sources but also facilitates the study of OAM-based quantum information.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要