Effects of aluminum-salt, CpG and emulsion adjuvants on the stability and immunogenicity of a virus-like particle displaying the SARS-CoV-2 receptor-binding domain (RBD)

Human Vaccines & Immunotherapeutics(2023)

引用 0|浏览15
暂无评分
摘要
Second-generation COVID-19 vaccines with improved immunogenicity (e.g., breadth, duration) and availability (e.g., lower costs, refrigerator stable) are needed to enhance global coverage. In this work, we formulated a clinical-stage SARS-CoV-2 receptor-binding domain (RBD) virus-like particle (VLP) vaccine candidate (IVX-411) with widely available adjuvants. Specifically, we assessed the in vitro storage stability and in vivo mouse immunogenicity of IVX-411 formulated with aluminum-salt adjuvants (Alhydrogel (TM), AH and Adjuphos (TM), AP), without or with the TLR-9 agonist CpG-1018 (TM) (CpG), and compared these profiles to IVX-411 adjuvanted with an oil-in-water nano-emulsion (AddaVax (TM), AV). Although IVX-411 bound both AH and AP, lower binding strength of antigen to AP was observed by Langmuir binding isotherms. Interestingly, AH- and AP-adsorbed IVX-411 had similar storage stability profiles as measured by antigen-binding assays (competitive ELISAs), but the latter displayed higher pseudovirus neutralizing titers (pNT) in mice, at levels comparable to titers elicited by AV-adjuvanted IVX-411. CpG addition to alum (AP or AH) resulted in a marginal trend of improved pNTs in stressed samples only, yet did not impact the storage stability profiles of IVX-411. In contrast, previous work with AH-formulations of a monomeric RBD antigen showed greatly improved immunogenicity and decreased stability upon CpG addition to alum. At elevated temperatures (25, 37 degrees C), IVX-411 formulated with AH or AP displayed decreased in vitro stability compared to AV-formulated IVX-411and this rank-ordering correlated with in vivo performance (mouse pNT values). This case study highlights the importance of characterizing antigen-adjuvant interactions to develop low cost, aluminum-salt adjuvanted recombinant subunit vaccine candidates.
更多
查看译文
关键词
emulsion adjuvants,immunogenicity,aluminum-salt,virus-like,sars-cov,receptor-binding
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要