A Nearly Linear-Time Distributed Algorithm for Exact Maximum Matching

arxiv(2023)

引用 0|浏览0
暂无评分
摘要
In this paper, we propose a randomized $\tilde{O}(\Mmax)$-round algorithm for the maximum cardinality matching problem in the CONGEST model, where $\Mmax$ means the maximum size of a matching of the input graph $G$. The proposed algorithm substantially improves the current best worst-case running time. The key technical ingredient is a new randomized algorithm of finding an augmenting path of length $\ell$ with high probability within $\tilde{O}(\ell)$ rounds, which positively settles an open problem left in the prior work by Ahmadi and Kuhn [DISC'20]. The idea of our augmenting path algorithm is based on a recent result by Kitamura and Izumi [IEICE Trans.'22], which efficiently identifies a sparse substructure of the input graph containing an augmenting path, following a new concept called \emph{alternating base trees}. Their algorithm, however, resorts to a centralized approach of collecting the entire information of the substructure into a single vertex for constructing an augmenting path. The technical highlight of this paper is to provide a fully-decentralized counterpart of such a centralized method. To develop the algorithm, we prove several new structural properties of alternating base trees, which are of independent interest.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要