谷歌浏览器插件
订阅小程序
在清言上使用

Probing the Self-Ionization of Liquid Water with Ab Initio Deep Potential Molecular Dynamics.

Proceedings of the National Academy of Sciences of the United States of America(2023)

引用 6|浏览12
暂无评分
摘要
The chemical equilibrium between self-ionized and molecular water dictates the acid- base chemistry in aqueous solutions, yet understanding the microscopic mechanisms of water self-ionization remains experimentally and computationally challenging. Herein, Density Functional Theory (DFT)-based deep neural network (DNN) potentials are combined with enhanced sampling techniques and a global acid-base collective variable to perform extensive atomistic simulations of water self-ionization for model systems of increasing size. The explicit inclusion of long-range electrostatic interactions in the DNN potential is found to be crucial to accurately reproduce the DFT free energy profile of solvated water ion pairs in small (64 and 128 H2O) cells. The reversible work to separate the hydroxide and hydronium to a distance S is found to converge for simulation cells containing more than 500 H2O, and a distance of similar to 8 angstrom is the threshold beyond which the work to further separate the two ions becomes approximately zero. The slow convergence of the potential of mean force with system size is related to a restructuring of water and an increase of the local order around the water ions. Calculation of the dissociation equilibrium constant illustrates the key role of longrange electrostatics and entropic effects in the water autoionization process.
更多
查看译文
关键词
liquid water,neural-network potentials,molecular dynamics,self-ionization,enhanced sampling
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要