Synthesis and Photophysical Properties of Lanthanide Pyridinylphosphonic Tacn and Pyclen Derivatives: From Mononuclear Complexes to Supramolecular Heteronuclear Assemblies

INORGANIC CHEMISTRY(2023)

引用 0|浏览4
暂无评分
摘要
Synthetic methodologies were developed to achieve the preparation of ligands L1 and L2 consisting of tacn- and pyclen-based chelators decorated with pyridinylphosphonic pendant arms combined with ethylpicolinamide or acetate coordinating functions, respectively. Phosphonate functions have been selected for their high affinity toward Ln(3+) ions compared to their carboxylated counterparts and for their steric hindrance that favors the formation of less-hydrated complexes. Thanks to regiospecific N-functionalization of the macrocyclic backbones, the two ligands were isolated with good yields and implicated in a comprehensive photophysical study for the complexation of Eu3+, Tb3+, and Yb3+. The coordination behavior of L1 and L2 with these cations has been first investigated by means of a combination of UV-vis absorption spectroscopy, steady-state and time-resolved luminescence spectroscopy, and H-1 and P-31 NMR titration experiments. Structural characterization in solution was assessed by NMR spectroscopy, corroborated by theoretical calculations. Spectroscopic characterization of the Ln(3+) complexes of L1 and L2 was done in water and D2O and showed the effective sensitization of the lanthanide metal-centered emission spectra, each exhibiting typical lanthanide emission bands. The results obtained for the phosphonated ligands were compared with those reported previously for the corresponding carboxylated analogues.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要