Filamentous marine Gram-positive Nocardiopsis dassonvillei biofilm as biocathode and its electron transfer mechanism.

The Science of the total environment(2023)

引用 0|浏览7
暂无评分
摘要
This study investigated electrochemical characteristics of Gram-positive, Nocardiopsis dassonvillei B17 facultative bacterium in bioelectrochemical systems. The results demonstrated that anodic and cathodic reaction rates were catalyzed by this bacterium, especially by utilization of aluminium alloy as a substrate. Cyclic voltammogram results depicted an increase of peak current and surface area through biofilm development, confirming its importance on catalysis of redox reactions. Phenazine derivatives were detected and their electron mediating behavior was evaluated exogenously. A symmetrical redox peak in the range of -59 to -159 mV/SHE was observed in cyclic voltammogram of bacterial solution supplemented with 12 μM phenazine, a result consistent with cyclic voltammogram of a 5-d biofilm, confirming its importance as an electron mediator in extracellular electron transfer. Furthermore, the dependency of bacterial catalysis and polarization potential were studied. These results suggested that B17 biofilm behaved as a biocathode and transferred electrons to bacterial cells through a mechanism associated with electron mediators.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要