Projection on Antarctic Temperature Extremes from the CMIP6 Multimodel Ensemble under Different Scenarios

JOURNAL OF APPLIED METEOROLOGY AND CLIMATOLOGY(2023)

引用 0|浏览1
暂无评分
摘要
Global warming has been accelerating the frequency and intensity of climate extremes, and has had an im-mense influence on the economy and society, but attention is seldom paid to future Antarctic temperature extremes. This study investigates five surface extreme temperature indices derived from the multimodel ensemble mean (MMEM) based on 14 models from phase 6 of the Coupled Model Intercomparison Project (CMIP6) under the shared socioeconomic path-ways (SSPs) of SSP1-2.6, SSP2-4.5, SSP3-7.0, and SSP5-8.5. In Antarctica, the variations in extreme temperature indices ex-hibit regional and seasonal differences. The diurnal temperature range (DTR) usually illustrates a downward trend, particularly for the Antarctic Peninsula and Antarctic coast, and the strongest change occurs in austral summer. In all cases, the annual highest minimum/maximum temperature (TNx/TXx) increases faster in inland Antarctica. Antarctic amplification of extreme temperature indices is detected and is strongest at the lowest maximum temperature (TXn). At the Antarctic Pen-insula, TXx amplification only appears in winter. Great DTR amplification appears along the Antarctic coast and is strongest in summer and weakest in winter. The changes in extreme temperature indices indicate the accelerated Antarctic warming in future scenarios.
更多
查看译文
关键词
Antarctica,Extreme events,Climate change
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要