谷歌浏览器插件
订阅小程序
在清言上使用

A Novel Analytical Solution for Ponded Infiltration with Consideration of a Developing Saturated Zone

WATER RESOURCES RESEARCH(2023)

引用 0|浏览7
暂无评分
摘要
Ponding at the soil surface exerts profound impacts on infiltration. However, the effects of ponding depth on infiltration, especially the development of a saturated zone below the soil surface, have yet to be considered in present infiltration models. A new general Green-Ampt model solution (GAMS) was derived for a one-dimensional vertical infiltration problem under a uniform initial moisture distribution with ponding on its surface. An expression was included in the new solution for simulating the saturated layer developed below the soil surface as long as the pressure head at the surface is sufficiently high to saturate the soil. The GAMS simulates the infiltration processes closer to the numerical solution by HYDRUS-1D than the traditional and the recently improved Green-Ampt model. Moreover, an inversion method to improve the estimates of soil hydraulic parameters from one-dimensional vertical infiltration experiments that is based on the GAMS was suggested. The effect of ponding depth (hp), initial soil moisture content, soil texture, and hydraulic soil properties (saturated hydraulic conductivity Ks, water-entry suction hd and shape coefficient n of soil water retention curve) in the saturated zone was also evaluated. The results indicate that the saturated zone length increased at a comparable rate with the unsaturated wetted zone length during infiltration. Generally, a larger saturated zone was found for soils with higher initial soil moisture contents, coarser texture, higher Ks values, greater n, and lower -hd. Our findings reveal that including the saturated zone in the infiltration model yields a better estimate of the soil hydraulic parameters. The proposed GAMS model can improve irrigation design and rainfall-runoff simulations. An implicit expression was proposed for the development of saturated zone during infiltrationThe newly proposed formula improved the simulation accuracy in all stages of ponded infiltrationThe new approach eliminated the time-dependency of the estimated soil hydraulic properties
更多
查看译文
关键词
infiltration,soil water movement,Green-Ampt model,Richards equation,Brooks-Corey model,irrigation
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要