Bifunctional core-shell co-catalyst for boosting photocatalytic CO2 reduction to CH4

NANO RESEARCH(2024)

引用 0|浏览0
暂无评分
摘要
Solar-light-driven CO2 reduction CO to CH4 and C2H6 is a complex process involving multiple elementary reactions and energy barriers. Therefore, achieving high CH4 activity and selectivity remains a significant challenge. Here, we integrate bifunctional Cu2O and Cu-MOF (MOF = metal-organic framework) core-shell co-catalysts (Cu2O@Cu-MOF) with semiconductor TiO2. Experiments and theoretical calculations demonstrate that Cu2O (Cu+ facilitates charge separation) and Cu-MOF (Cu2+ improves the CO2 adsorption and activation) in the core-shell structure have a synergistic effect on photocatalytic CO2 reduction, reducing the formation barrier of the key intermediate *COOH and *CHO. The photocatalyst exhibits high CH4 yield (366.0 mu mol center dot g(-1)center dot h(-1)), efficient electron transfer (3283 mu mol center dot g(-1)center dot h(-1)) and hydrocarbon selectivity (95.5%), which represents the highest activity of Cu-MOF-based catalysts in photocatalytic CO2 reduction reaction. This work provides a strategy for designing efficient photocatalysts from the perspective of precise regulation of components.
更多
查看译文
关键词
bifunctional,co-catalyst,core-shell,photocatalytic,CO2 reduction
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要